An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity.
نویسندگان
چکیده
Infectious retrovirus particles are derived from structural polyproteins which are cleaved by the viral proteinase (PR) during virion morphogenesis. Besides cleaving viral polyproteins, which is essential for infectivity, PR of human immunodeficiency virus (HIV) also cleaves cellular proteins and PR expression causes a pronounced cytotoxic effect. Retroviral PRs are aspartic proteases and contain two copies of the triplet Asp-Thr-Gly in the active center with the threonine adjacent to the catalytic aspartic acid presumed to have an important structural role. We have changed this threonine in HIV type 1 PR to a serine. The purified mutant enzyme had an approximately 5- to 10-fold lower activity against HIV type 1 polyprotein and peptide substrates compared with the wild-type enzyme. It did not induce toxicity on bacterial expression and yielded significantly reduced cleavage of cytoskeletal proteins in vitro. Cleavage of vimentin in mutant-infected T-cell lines was also markedly reduced. Mutant virus did, however, elicit productive infection of several T-cell lines and of primary human lymphocytes with no significant difference in polyprotein cleavage and with similar infection kinetics and titer compared with wild-type virus. The discrepancy between reduced processing in vitro and normal virion maturation can be explained by the observation that reduced activity was due to an increase in Km which may not be relevant at the high substrate concentration in the virus particle. This mutation enables us therefore to dissociate the essential function of PR in viral maturation from its cytotoxic effect.
منابع مشابه
Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor
Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...
متن کاملEffects of human immunodeficiency virus type 1 transframe protein p6* mutations on viral protease-mediated Gag processing.
The proteolytic processing of human immunodeficiency virus (HIV) particles mediated by the viral pol-encoded protease (PR) is essential for viral infectivity. The pol coding sequence partially overlaps with the gag coding sequence and is translated as a Gag-Pol polyprotein precursor. Within Gag-Pol, the C-terminal p6(gag) domain is replaced by a transframe peptide referred to as p6*, which sepa...
متن کاملEffect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor
Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...
متن کاملHIV-1 protease dimer interface mutations that compensate for viral reverse transcriptase instability in infectious virions.
Mature enzymes encoded within the human immunodeficiency virus type 1 (HIV-1) genome (protease (PR), reverse transcriptase (RT) and integrase (IN)) derive from proteolytic processing of a large polyprotein (Gag-Pol). Gag-Pol processing is catalyzed by the viral PR, which is active as a homodimer. The HIV-1 RT functions as a heterodimer (p66/p51) composed of subunits of 560 and 440 amino acid re...
متن کاملEngineering human immunodeficiency virus 1 protease heterodimers as macromolecular inhibitors of viral maturation.
Dimerization of human immunodeficiency virus type 1 protease (HIV-1 PR) monomers is an essential prerequisite for viral proteolytic activity and the subsequent generation of infectious virus particles. Disruption of the dimer interface inhibits this activity as does formation of heterodimers between wild-type and defective monomers. A structure-based approach was used to identify amino acid sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 69 11 شماره
صفحات -
تاریخ انتشار 1995